
SFK
Tutorial

A step by step introduction

into the Swiss File Knife

command line tool.

Informations in this book are provided by the author "as is"
and any express or implied warranties, including, but not
limited to, the implied warranties of fitness for a particular
purpose are disclaimed. In no event shall the publisher or
author be liable for any direct, indirect, incidential, special,
exemplary or consequential damages (including, but not
limited to, procurement of substitute goods or services;
loss of use, data, or profits; or business interruption) however
caused and on any theory of liability, whether in contract,
strict liability, or tort (including negligence or otherwise)
arising in any way out of the use of the software described
here, even if advised of the possibility of such damage.

3

Contents
Introduction

How to get the SFK tool running instantly 5

File handling
List all files of a folder, and all sub folders 8
List only selected files in selected sub folders 9
List files using wildcards 10
List the latest or biggest files 10
Find a filename quickly in the current directory tree 11
List different files between two folders 12
Run a command on all files of a folder 12
Rename files quickly using patterns 14
List the size of directory tree contents 16
Copy a folder, or parts of it, or only updates 17
Delete or clean up specific files in a folder 19
How to use index files for fast filename lookup 20
Tell where in the PATH a command is run from 22
Create checksums of files 23
Find duplicate files 24

Find and replace within files
Find words in text and binary files 25
Replace words in text and binary files 26
Flexible filter and replace in a single text file 27
Search in files using wildcards and Simple Expressions 28

File conversion and processing
Convert plain text files between Windows/Linux format 29
Remove TAB characters from text 30
Split large files 31
Collect many text files into one large text 31
Sort text lines alphabetically 33

4

Send files via network
How to send a file from one computer to another 35
How to transfer many files, or just changed ones 37

Further useful functions
Read or write the clipboard under Windows 39
Convert CSV data to tab separated text 41
Count text lines 34
Write long commands into a script 43
Search environment variables for words 45

Xed big examples
reformat comma separated value (CSV) text 47
convert fixed column data to CSV data 48
convert CSV data to XML data 49
convert XML data to CSV data 51
cleaning up a translation file 53
extract 2 letter phrases from text 54
Wiki markup text to HTML code conversion 55
HTTP Scripting and Test Automation 60
Filling an XML file with program meta informations 65
A detailed +perline example 72
Script creation and debugging tips 75

General infos
general infos 78 syntax concepts valid for most commands
Windows/Linux/Mac
syntax differences

80 what needs to be typed different in the
examples under Linux and Mac OS/X

5

How to get the Swiss File Knife up and running anywhere.
Download the executables for Windows, Linux or Mac OS/X
By web browser: go to
 http://stahlworks.com/sfk/

then click on one of the top links to download your binary instantly.
Alternatively, look on SourceForge:
 http://sourceforge.net/projects/swissfileknife/

or on a Linux text console, use one of these:
wget http://stahlworks.com/sfkux for current 32 bit systems
wget http://stahlworks.com/sfkux64 for current 64 bit systems
wget http://stahlworks.com/sfkuxold for older 32 bit systems

(like DSL, using lib5)
wget http://stahlworks.com/sfkarm for 32 bit ARM systems

If your system has no wget command then try curl instead, like:

 curl -o sfk http://stahlworks.com/sfkux

The Apple Mac OS/X binaries are available by:
curl -o sfk http://stahlworks.com/sfkmac for current Intel

based Macs
curl -o sfk http://stahlworks.com/sfkmacold for PowerPC based

Macs
Self compile: on systems for which no binary is available you may download
the sourcecode from the SourceForge link (.zip or .tar.gz). Make sure the g++
or gcc compiler is installed on your system. Then type:
 g++ sfk.cpp sfkext.cpp sfkpack.cpp -o sfk

Transfer of SFK without internet access:
If the target machine has any connection to a local network, try the following:

SFK Instant HTTP Server for easy file exchange
on another machine where you have SFK already, type
 sfk httpserv -port=9090

and make sure the sfk binary is located in the current folder.
on the target machine, open a web browser and access:
 http://othermachine:9090/

6

or on a Linux/Mac console, type one of:
 wget http://othermachine:9090/sfk

 curl -o sfk http://othermachine:9090/sfk

further reading:
httpserv tutorial on page 35.

If that fails (no browser, no gui, no wget or curl command), check if there is
an "ftp" command on the target. If so, try:

SFK Instant FTP Server for easy file exchange
on a machine where you have SFK already, type:
 sfk ftpserv

it will tell you the machine's IP address. then, on the target machine, type:
 ftp ipaddress

and if the login succeeds, try:
 bin
 get sfk.exe
If ftp cannot connect to the server then try to run ftpserv as administrator. If
get fails, check if the ftp client on the target accepts the command:
 passive

then try to "get" again (ftp creates a new connection per file download, which
is often blocked by firewalls. the passive command changes the way in which
those connections are created.)

further reading:
ftpserv tutorial on page 35.

How to prepare the SFK binary under Linux:
After download, you have to type
 mv sfkux sfk
 chmod +x sfk

to enable execution (the 'x' flag) of sfk. Then simply type
 ./sfk

to get it running (the "./" is often needed as the PATH may not contain the
current directory ".").

7

Where to place the SFK executable:
Recommendation for Windows
Create a directory structure
 c:\app\bin

then copy sfk.exe to c:\app\bin. Then extend the Windows Shell Path like
 set PATH=%PATH%;c:\app\bin

which is best done in a batch file like c:\app\init.bat, so after opening
CMD.EXE just type c:\app\init to extend the path. Also make sure your
Windows Shell (CMD.EXE) supports command auto-completion and
copy/paste of text (the QuickEdit and Insert setting), otherwise it is very hard
to use!

further reading:
sfk help shell

If you create a collection of batch files (e.g. through the "sfk alias" command)
it is most convenient to store them in c:\app\bin as well, as this path is short
and contains no blank characters. Further tools can be installed parallel to
"bin" into c:\app.

Recommendation for Linux and Mac OS/X
Type "cd" then "pwd" to find out what your account's home directory is.
Within your home directory (e.g. /home/users/youruserid/) create
a directory "tools" by
 mkdir tools

then rename sfk-linux.exe to sfk, and copy that into the tools dir.
Extend the PATH like:
 export PATH=$PATH:/home/users/youruserid/tools

then you should be able to run sfk by typing "sfk".
By default, there are no colors, as it is not possible to autodetect the
background color under Linux/Mac. If you like colorful output then
read on under "sfk help color".

8

List all files of a folder, and all sub folders

Everyone knows that dir mydir on Windows, or ls mydir on Linux/Mac
shows the filenames in the top level of a folder mydir, without it's sub folders.

If, however, you want to list all files in mydir and all it's sub folders,
as a flat list of filenames with full path each, then use

 sfk dir mydir

example output:
 mydir\project1\01-make-all.sh
 mydir\project1\app\gui\base\Tools.cpp
 mydir\project1\app\gui\base\Tools.hpp
 mydir\project1\app\gui\login\Screen.cpp
 mydir\project1\config.h
 mydir\project1\config.h.bak
 mydir\project1\save\config.h
 mydir\project1\save2\config.h
 mydir\project1\save3\config.h
 mydir\project1\tmp\trash1.txt
 mydir\project1\tmp\trash2.txt
 mydir\project1\tmp\trash3.txt
 mydir\project1\tools\include\Tools.hpp
 mydir\project1\tools\include\Tools.hpp.bak
 mydir\project1\tools\new.myscm\sub1.txt
 mydir\project1\tools\org.myscm\sub1.txt
 mydir\project1\tools\source\.myscm\sub3.txt
 mydir\project1\tools\source\other1.myscm
 mydir\project1\tools\source\other1.myscm.bak
 mydir\project1\tools\source\save\.myscm
 mydir\project1\tools\source\save\.myscm-file.txt
 mydir\project1\tools\source\save\Tools.cpp
 mydir\project1\tools\source\Tools.cpp
 mydir\project1\tools\source\Tools.tmp
 25 files, 18 dirs, 2828 bytes.

Notice that sub folder traveling is default with most SFK commands, so you
don't have to use an extra option for that. This is because, if I want to do
something "with all files of a folder", in most cases I literally mean all files.
Instead of "sfk dir" you may also use "sfk list" which produces just the list of
filenames, without the "files, dirs, bytes" info.

9

List only selected files in selected sub folders

In the above example, we notice two kinds of files:
- live files we are actively working with
- backup or trash files and folders named tmp, bak, save.
In most cases, we want to
- list all files of that folder
- except for files within folders having tmp or save in their name
- and except for files ending with .bak or .tmp.
This can be done with SFK by:

 sfk dir -dir mydir -subdir !tmp !save -file !.bak !.tmp

example output:
 mydir\project1\01-make-all.sh
 mydir\project1\app\gui\base\Tools.cpp
 mydir\project1\app\gui\base\Tools.hpp
 mydir\project1\app\gui\login\Screen.cpp
 mydir\project1\config.h
 mydir\project1\tools\include\.myscm\sub2.txt
 mydir\project1\tools\include\Tools.hpp
 mydir\project1\tools\new.myscm\sub1.txt
 mydir\project1\tools\org.myscm\sub1.txt
 mydir\project1\tools\source\.myscm\sub3.txt
 mydir\project1\tools\source\other1.myscm
 mydir\project1\tools\source\Tools.cpp
 12 files, 13 dirs, 1376 bytes.

Wildcards are default and need not to be specified in most cases. This means
that !save actually means !*save* - i.e. excluding every sub directory that
has save somewhere in it's name, like save, save2, save3 etc.
Under Linux/Mac you have to use a colon ":" instead of "!" because the
command shell misinterprets "!" as some command for itself.
So use instead:
 sfk dir -dir mydir -subdir :tmp :save -file :.bak :.tmp

10

Listing files using wildcards

To list files within sub folder names containing words "new" and "scm" use
 sfk list -dir mydir -subdir new*scm

example output:
 mydir\project1\tools\new.myscm\sub1.txt

Under Linux/Mac you must surround anything with * or ? by double quotes
because the command shell misinterprets "*" as some command for itself.
Alternatively you may use % as a replacement for "*". So use one of:
 sfk list -dir mydir -subdir "new*scm"
 sfk list -dir mydir -subdir new%scm

for all Linux/Mac syntax
details see page 80.

List the latest or biggest files
Which files were changed most recently within mydir? Find out by:
 sfk list -late mydir

example output:
 2015-01-18 06:47:54 mydir\project1\app\gui\base\Tools.cpp
 2015-01-18 13:44:17 mydir\project1\tools\source\save\.myscm
 2015-02-28 08:54:20 mydir\project1\tools\source\other1.myscm
 2015-02-28 08:54:20 mydir\project1\tools\source\Tools.cpp
 2015-02-28 08:54:20 mydir\project1\tools\source\Tools.tmp

And what are the biggest files in mydir?
 sfk list -big mydir

example output:
 41 mydir\project1\save2\config.h
 56 mydir\project1\save\config.h
 171 mydir\project1\config.h
 1074 mydir\project1\tools\source\Tools.cpp
 1210 mydir\project1\tools\source\Tools.tmp

11

Find a filename quickly in the current directory tree

You are standing within a folder and know that a file having foo somewhere in
it's path- and/or filename exists. But you don't know exactly where. This can
be solved by

 sfk filefind foo

example output:

 project1\tools\source\BarFoo.cpp

So, there is a file "BarFoo" in a sub folder project1\tools\source .
Notice that case insensitive search is default with every SFK command,
therefore "foo" finds both "foo" and "Foo". Because this quick local filename
search is needed so often, you may also type:

 sfk :foo

Which does the same as "filefind foo".
Another example:

 sfk :tool*sub2

may find:

 project1\tools\include\.myscm\sub2.txt

as this contains "tool" in it's path and "sub2" in it's filename.

Under Linux/Mac use instead:

 sfk :tool%sub2

as otherwise a * wildcard would be misinterpreted by the shell
and not given to SFK.

12

List different files between two folders
I have files in a folder "step1". I make a copy of the whole folder as "step2"
and continue working within "step2". After some hours I wonder which files
are different compared to the old folder.
 sfk list -sincedir step1 step2

tells:
 [dif] step2\base.php
 [dif] step2\classes\tree.class.php
 [dif] step2\index.php
 [add] step2\organizer.php
 [add] step2\tasks.php

meaning:
- 3 files that exist in both folders are different
- 2 files have been created in step2 that did not exist in step1

Note that files which were deleted in folder step2 are not shown. These can
be found by running a reverse folder comparison:
 sfk list -sinceadd step2 step1

tells:
 [add] step1\queuescanner.php

so the file queuescanner.php was deleted in step2.

Run a command on all files of a folder
I want to collect all .jpg files in a folder mydir like
 mydir\Formats\06-binary.jpg
 mydir\myproj\app\gui\base\GreenFoo.jpg
 mydir\myproj\app\gui\login\Door.jpg
 mydir\myproj\tools\BackButton.jpg
 mydir\myproj\tools\Home.jpg

into a single flat folder called "overview". This can be done by:
 sfk list mydir .jpg +run "copy $qfile overview"

on Linux/Mac: use #qfile instead of $qfile.

	Contents
	How to get the Swiss File Knife up and running anywhere.
	List all files of a folder, and all sub folders
	List only selected files in selected sub folders
	Listing files using wildcards
	List the latest or biggest files
	Find a filename quickly in the current directory tree
	List different files between two folders
	Run a command on all files of a folder

